
The USB-C 
Moment for AI
By the Feluda.ai Editorial Team
21-08-2025

In the 1990s, your desk probably had more 
cables than sense. Printers had parallel ports, 
cameras came with clunky connectors, and 
nothing played nicely together.

Then USB arrived and quietly rewrote the rules 
— one universal plug, one language, one way to 
connect it all.

Today, artificial intelligence is facing its own cable-drawer moment. AI assistants can hold 
conversations, write code, even summarize medical research.

But ask them to fetch a file from your Google Drive, cross-check it with a company database, 
and send the result to Slack? Suddenly, the magic sputters. Every integration requires custom 
wiring, every ecosystem invents its own plugins, and interoperability feels like a dream deferred.

That’s where the Model Context Protocol (MCP) comes in — a new standard designed to make AI 
less like a collection of isolated gadgets and more like a coherent digital ecosystem. Launched by 
Anthropic in late 2024 and rapidly adopted across the industry, MCP promises to do for AI what 
USB-C did for electronics: remove friction, unify connections, and finally let the technology 
scale.

But Anthropic isn’t the only one with this vision. In parallel, Google DeepMind has been 
championing its own standard — the Agent-to-Agent (A2A) protocol — designed not just to 
connect AI to tools, but to allow agents to talk to each other.

Together, MCP and A2A hint at the future of AI infrastructure: one where assistants don’t just 
think in silos, but cooperate, coordinate, and plug into the digital world with the same ease that 
your laptop swaps between Wi-Fi networks.

And this is where Feluda.ai enters the story. If MCP provides the ports and A2A provides the 
channels, Feluda.ai provides the content layer: a growing ecosystem of skills, tools, and resources 
that can be instantly plugged into AI systems.

Think of it as the App Store for AI assistants, built directly on top of MCP. By organizing 
everything from research skills and cybersecurity tools to productivity helpers and life-admin 
guides, Feluda.ai ensures that interoperability isn’t just theoretical — it’s useful, immediate, and 
available to anyone building or using AI.

https://feluda.ai/
https://feluda.ai/
https://feluda.ai/
https://feluda.ai/reading-room
https://feluda.ai/reading-room
https://feluda.ai/shop/genes
https://feluda.ai/shop/genes


Genesis of MCP
The story begins in November 2024, when Anthropic announced the launch of MCP as an 
open-source protocol. The motivation was simple but profound: AI needed a common 
language for interacting with external systems.

For years, companies had tried different flavors 
of this idea. OpenAI’s plugins worked only 
within ChatGPT. Microsoft’s Copilot 
connectors tied into Office. Startups wrote 
custom bridges for every API under the sun. 
Each solved a narrow problem, but none 
addressed the underlying chaos.

MCP’s pitch was clear: stop reinventing the 
wheel. Instead of a spaghetti mess of bespoke 
integrations, create a universal handshake 
between agents and tools. 

In MCP’s model, a server wraps a tool or dataset, exposing it in a standardized way; a client (the 
AI system) calls on that server; and a host (the platform, like Claude Desktop or ChatGPT) 
manages the flow. The result: build once, run anywhere.

The launch wasn’t just technical — it was strategic. By open-sourcing MCP and rallying early 
partners like Replit, Block, and Sourcegraph, Anthropic positioned it as a community standard 
rather than a walled garden. That decision accelerated adoption: within months, OpenAI 
announced MCP support across its ecosystem, Microsoft began exploring enterprise 
connectors, and even Google acknowledged its relevance — despite investing heavily in its own 
A2A protocol.

Feluda.ai quickly recognized MCP’s potential and aligned itself as one of the most active 
implementers. Instead of merely theorizing about interoperability, Feluda built a living 
ecosystem of MCP-powered skills: structured research assistants, RSS aggregators, 
cybersecurity monitors, threat actor trackers, document analysis tools, and more. These weren’t 
just demos — they became a blueprint for how MCP could be put to work in real-world 
workflows.

https://feluda.ai/content/faq/can-claude-work-with-feluda
https://feluda.ai/content/faq/can-claude-work-with-feluda
https://feluda.ai/content/faq/can-chatgpt-work-with-feluda
https://feluda.ai/content/faq/can-chatgpt-work-with-feluda
https://feluda.ai/content/faq/Genes-make-them-work-for-you
https://feluda.ai/content/faq/Genes-make-them-work-for-you
https://feluda.ai/content/faq/Genes-make-them-work-for-you
https://feluda.ai/content/faq/Genes-make-them-work-for-you
https://feluda.ai/content/faq/Model-Context-Protocol
https://feluda.ai/content/faq/Model-Context-Protocol
https://feluda.ai/content/faq/Model-Context-Protocol
https://feluda.ai/content/faq/Model-Context-Protocol


A2A: Google’s 
Parallel Play
While MCP focused on AI-to-tool integration, 
Google’s Agent-to-Agent protocol (A2A) took a 
different angle. 

Instead of standardizing how a model fetches a 
file or calls an API, A2A asks: what if we 
standardized how agents collaborate with 
each other?

Imagine one AI managing your calendar, another handling your email, and a third optimizing 
your codebase. 

Without a common language, they risk stepping on each other’s toes. A2A proposes a way for 
them to negotiate, delegate, and share context — much like humans do in a team.

In this sense, MCP and A2A aren’t competitors so much as complements. MCP is the USB-C 
cable connecting AI to the outside world. A2A is the Slack channel where multiple AIs coordinate 
their moves. And Feluda.ai? It’s the workspace stocked with all the tools and apps those AIs 
need to be productive.

Together, the three represent a layered model of the future:

MCP provides the interoperability fabric.
A2A ensures smooth coordination between agents.
Feluda.ai supplies the skills and resources that make the whole thing worth using.



How MCP, A2A, and Feluda Fit 
Together
Every great city runs on infrastructure most of 
its citizens never see: the power grid humming 
in the background, the pipes carrying water 
underfoot, the cellular towers blending into 
the skyline. 

Artificial intelligence is no different. 

Beneath the chatty personalities and clever 
outputs lies a web of protocols that determine 
whether an assistant can actually do useful 
work.

The Model Context Protocol (MCP) is one such piece of infrastructure. At its core, MCP defines 
how three roles — server, client, and host — interact:

Server: wraps a tool, resource, or dataset and exposes it in a standard format.
Client: the AI model (Claude, GPT, Llama, etc.) that calls on those servers.
Host: the platform (Claude Desktop, ChatGPT, or others) that orchestrates the dance, 
ensuring secure connections and smooth communication.

MCP also specifies transports — the pipes through which data flows. These can be stdio (simple 
streams), sockets, or streamable HTTP, the latter being crucial for scaling across the web. 

By separating what a tool does (its schema) from how it connects (the transport), MCP achieves 
the golden rule of infrastructure: decouple so you can scale.

"The best is yet to come."

https://modelcontextprotocol.io/docs/getting-started/intro
https://modelcontextprotocol.io/docs/getting-started/intro


Why It Matters
This separation is more than technical elegance. It’s what allows an MCP server built for, say, a 
cybersecurity scanner, to be used in any MCP-compatible host, whether that’s Anthropic’s 
Claude, OpenAI’s GPT, or an enterprise assistant embedded in a Fortune 500 workflow. 

“Build once, run anywhere” isn’t marketing spin — it’s literally the contract MCP enforces.

A2A: A Different Wiring Diagram
Google’s Agent-to-Agent (A2A) protocol sketches a different kind of plumbing. Instead of 
focusing on how tools are exposed, it focuses on how agents coordinate. 

In A2A’s world, each AI agent is a node in a network. They pass tasks to each other, negotiate 
who should do what, and share snippets of context to avoid duplication or confusion.

Think of MCP as defining how a wrench plugs into a socket, while A2A defines how multiple 
workers in a factory decide who grabs the wrench, who operates it, and who inspects the result. 
Without A2A, you risk chaos: five agents all emailing your boss at once, or none taking 
responsibility at all.

https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/
https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/
https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/


Feluda.ai: The Application Layer
If MCP is the wiring and A2A is the coordination protocol, then Feluda.ai is the workshop 
stocked with tools.

Feluda doesn’t just theorize about interoperability — it builds an ever-expanding library of MCP-
compatible skills:

Threat actor trackers for cybersecurity research.
RSS aggregators for intelligence feeds.
Research journalers that automatically create structured knowledge bases.
Document analyzers for PDFs, legal texts, or government filings.
Personal assistants for everyday life — from meal planning to resume building.

Because these are built as genes, they can be plugged into any AI. 

And when A2A gains momentum, multiple AI agents could even coordinate across Feluda skills: 
one agent fetching open-source intelligence, another analyzing it for risk, a third writing a 
report — all in harmony.

This positions Feluda.ai as the practical enabler in the ecosystem. MCP provides the standards. 
A2A defines the teamwork. Feluda fills the shelves with tools worth using.

https://feluda.ai/download
https://feluda.ai/download
https://feluda.ai/download
https://feluda.ai/download


MCP’s Breakthroughs: A 
Common Language for AI
At its heart, the Model Context Protocol (MCP) is about standardization. Instead of every 
assistant or company inventing their own plugin ecosystem, MCP provides a shared grammar for 
how AI connects to tools, data, and external systems.

1. Schema-Based Tools

Every MCP server exposes its functionality through JSON Schema definitions. This means:

The AI doesn’t have to “guess” how to call a tool.
Functions, arguments, and outputs are described in a machine-readable way.
Any MCP-compatible client can call the tool without custom coding.

Why it matters: In the pre-MCP world, you needed bespoke wrappers for every API. With MCP, a 
well-formed schema is all you need — it’s plug-and-play.

2. Content Responses

MCP doesn’t just return raw text. It supports typed content responses — structured JSON, 
documents, even streams of data. That’s critical because AIs often need more than a blob of text: 
they need structured data to parse, transform, or feed into other workflows.

Think of it as the difference between a restaurant giving you a mystery box of groceries vs. 
handing you neatly labeled containers.

3. Streaming & Transport Flexibility

MCP supports multiple transports (stdio, sockets, HTTP streaming). This flexibility means it can 
run locally (for developers), across the cloud (for enterprises), or inside desktop apps (for 
consumers).

The streaming model is particularly powerful: A tool doesn’t have to finish before it starts 
responding. An MCP server can trickle results — say, search hits or RSS items — while still 
working in the background.

4. Security & Sandboxing

Because MCP is designed for enterprise adoption, it includes capability-based access. Clients 
only see the tools explicitly exposed. There’s no hidden backdoor into your system. That balance 
— openness without chaos — is why companies like Replit and Sourcegraph backed MCP early.

https://feluda.ai/content/blog/phishing-investigation-with-feluda
https://feluda.ai/content/blog/phishing-investigation-with-feluda


A2A’s Distinctive Features: Coordination over Connection
Where MCP innovates in connecting AI to the world, Google’s Agent-to-Agent (A2A) innovates in 
agent collaboration. Its key features:

1. Task Negotiation

Agents don’t just execute commands blindly. They negotiate who should take ownership of a 
task, much like teammates deciding roles in a project.

2. Context Sharing

Instead of duplicating work, A2A agents can share partial results or snippets of context. This 
reduces redundancy (and hallucinations) while boosting efficiency.

3. Multi-Agent Workflows

A2A formalizes delegation chains: one agent can pass a partially completed task to another, 
ensuring modular workflows where each AI plays to its strengths.



Feluda.ai: Turning Standards 
into Skills
While MCP and A2A sketch the blueprints, Feluda.ai is where the real-world applications take 
shape. Its innovations aren’t theoretical — they’re lived.

1. Skill-Building on MCP

Feluda.ai builds MCP-compliant servers that package up concrete abilities:

Fetch and parse government RSS feeds.
Analyze PDFs into structured JSON.
Track cybersecurity threat actors in Markdown knowledge bases.
Manage personal productivity (budgets, appointments, subscription tracking).

Every one of these is an MCP server, meaning they can run anywhere MCP is supported.

2. Cross-Skill Synergy with A2A

Imagine three Feluda skills — one fetching Europol threat reports, another translating them, a 
third summarizing for executives. With A2A, these skills could coordinate seamlessly, handing 
tasks along the chain without human micromanagement.

This is Feluda’s magic: it doesn’t just show what MCP can do, it shows what MCP + A2A can 
achieve together.

Why This Matters
The innovations of MCP and A2A are exciting in isolation, but it’s Feluda.ai that makes them 
usable at scale. Without skills, protocols are just wiring diagrams. Feluda stocks the toolbox, 
organizes the shelves, and hands you ready-to-use capabilities and knowledge.

In a way, Feluda does for AI assistants what the early App Store did for smartphones: transform 
abstract infrastructure into everyday utility.

https://feluda.ai/shop
https://feluda.ai/shop


The Long Road to Interoperability
AI may feel like the cutting edge, but its struggle with interoperability is as old as computing 
itself. Each generation of technology has wrestled with the same question: how do you make 
different systems talk to each other without chaos?

In the 1980s, businesses juggled word processors that couldn’t open each other’s files.
In the 1990s, hardware connectors became a graveyard of proprietary plugs.
In the 2000s, mobile phones were locked into walled-garden app stores and carriers.
In the 2010s, cloud providers reinvented the wheel with their own APIs and integrations.

The lesson, repeated each decade: a common standard always wins, eventually.

Pre-MCP Attempts
Before MCP, the AI world tried multiple 
workarounds.

Each of these solved narrow problems. 

But none created the USB-C moment that the 
industry needed:

OpenAI Plugins (2023–24): Clever but platform-locked. A plugin written for ChatGPT 
couldn’t be used in Claude or Gemini. Developers had to pick a winner.
Microsoft Copilot Connectors: Focused on Office and enterprise environments. Powerful in 
their silo, but hardly universal.
Startup Bridges: Countless companies wrote middleware to translate APIs into LLM-
friendly prompts. Useful for demos, but brittle and unscalable.

What MCP Changed
MCP’s biggest breakthrough wasn’t technical — it was political. By open-sourcing the spec and 
encouraging competitors like OpenAI to adopt it, Anthropic avoided the trap of “yet another 
walled garden.”

This move turned MCP into a neutral infrastructure layer, not a competitive moat. Suddenly, a 
tool built for Claude could run in GPT, Llama, or an enterprise assistant without rewriting code.

It’s the same play that made HTTP the foundation of the web, rather than a vendor-specific 
protocol.



Where Feluda.ai Fits
Here’s where things get interesting. Protocols alone don’t win markets — ecosystems do.

The web wasn’t built on HTTP alone, but on the browsers and websites that made it usable.
USB-C didn’t win because of its elegance, but because laptops, phones, and accessories 
adopted it en masse.
App stores transformed smartphones from gadgets into indispensable hubs.

That’s what Feluda.ai is doing for MCP and A2A. It’s building the ecosystem of skills and 
resources that make these protocols matter to real users:

Researchers using Feluda’s structured journals.
Analysts using its RSS and threat trackers.
Everyday users relying on personal productivity helpers.

By positioning itself as the marketplace layer, Feluda ensures MCP isn’t just a spec on GitHub, 
and A2A isn’t just an academic exercise. Instead, they become the backbone of a living, breathing 
ecosystem of useful skills.



Download Feluda Today
Feluda is an AI operations platform. Its mission is simple: turn LLMs from clever assistants into 
dependable teammates. It does this by introducing Genes — modular, auditable workflows that 
act like apps for your AI assistant.

It Extends, Evolves, and Enhances your LLMs with powerful upgrades.

Install Feluda with CherryStudio
Install Feluda with 5IRE
Install Feluda with LM Studio
Install Feluda with Anthropic's Claude

Explore Feluda.ai

https://feluda.ai/docs/installation/cherrystudio
https://feluda.ai/docs/installation/5ire
https://feluda.ai/docs/installation/lmstudio
https://feluda.ai/docs/installation/claude
https://feluda.ai/download
https://feluda.ai/download

